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Abstract. We evaluate O(αbαs) corrections in the Higgs boson sector of the CP -conserving MSSM, general-
ising the known result in the literature to arbitrary values of tan β. A detailed analysis of the renormalisation
in the bottom/scalar bottom sector is performed. Concerning the lightest MSSM Higgs boson mass, we
find relatively small corrections for positive µ, while for µ < 0 the genuine two-loop O(αbαs) corrections
can amount up to 3 GeV. Different renormalisation schemes are applied and numerically compared. It
is demonstrated that some care has to be taken in choosing an appropriate renormalisation prescription
in order to avoid artificially large corrections. The residual dependence on the renormalisation scale is
investigated, and the remaining theoretical uncertainties from unknown higher-order corrections in this
sector are discussed for different regions of the MSSM parameter space.

1 Introduction

A crucial prediction of the minimal supersymmetric stan-
dard model (MSSM) [1] is the existence of at least one light
Higgs boson. The search for this particle is one of the main
goals at the present and the next generation of colliders.
Direct searches at LEP have already ruled out a consid-
erable fraction of the MSSM parameter space [2, 3], and
the forthcoming high-energy experiments at the Tevatron,
the LHC, and the International Linear Collider (ILC) will
either discover a light Higgs boson or rule out supersym-
metry (SUSY) as a viable theory for physics at the weak
scale. Furthermore, if one or more Higgs bosons are discov-
ered, bounds on their masses and couplings will be set at
the LHC [4–6]. Eventually the masses and couplings will
be determined with high accuracy at the ILC [7–9]. Thus,
precise knowledge of the dependence of masses and mixing
angles in the MSSM Higgs sector on the relevant super-
symmetric parameters is of utmost importance to reliably
compare the predictions of the MSSM with the (present
and future) experimental results.

The status of the available results for the higher-order
contributions to the neutral CP -even MSSM Higgs boson
masses can be summarised as follows. For the one-loop part,
the complete result within the MSSM is known [10–13]. The
dominant one-loop contribution is the O(αt) term due to
top and stop loops (αt ≡ h2

t /(4π), ht being the superpoten-
tial top coupling). Corrections from the bottom/sbottom
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sector can also give large effects, in particular for large
values of tanβ, the ratio of the two vacuum expectation
values, tanβ = v2/v1. The computation of two-loop correc-
tions is also quite advanced. It has now reached a stage such
that all the presumably dominant contributions are known.
They include the strong corrections, usually indicated as
O(αtαs), and Yukawa corrections, O(α2

t ), to the dominant
one-loop O(αt) term, as well as the strong corrections to the
bottom/sbottom one-loop O(αb) term (αb ≡ h2

b/(4π)), i.e.
the O(αbαs) contribution, derived in the limit tanβ → ∞.
Presently, the O(αtαs) [14–23], O(α2

t ) [14,15,24,25] and the
O(αbαs) [26] contributions to the self-energies are known
for vanishing external momenta. Most recently also the cor-
rections O(αtαb) and O(α2

b) [27], a “full” two-loop effective
potential calculation [28] and an evaluation of the leading
two-loop momentum dependent effects [29] have become
available. In the (s)bottom corrections the all-order resum-
mation of the tanβ-enhanced terms, O(αb(αs tan β)n), is
also performed [30,31]. Reviews with further references can
be found in [32–34].

The b/b̃ sector has attracted considerable attention in
the last years, since its corrections to the MSSM Higgs bo-
son sector have been found to be large in certain parts of the
MSSM parameter space, possibly even exceeding the size
of the top/stop corrections. This can happen especially for
large values of tanβ and the supersymmetric Higgs mass
parameter µ. For illustration, we show in Fig. 1 the shift in
the lightest CP -even Higgs boson mass, ∆Mh, arising from
the b/b̃ sector at the one-loop level (all two-loop correc-
tions are omitted here) as a function of the bottom-quark
mass for large tan β and |µ|. The bottom-quark mass in
this plot is understood to be an effective mass that in-
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Fig. 1. The shift in the lightest CP -even Higgs boson mass from
the one-loop corrections in the b/b̃ sector is shown as a func-
tion of the (effective) bottom-quark mass for µ = ±1000 GeV,
tan β = 50, MSUSY = 600 GeV, At = Ab = 500 GeV,
MA = 700 GeV

cludes higher-order effects (see the discussion in Sect. 3).
The figure demonstrates that corrections from the b/b̃ sec-
tor can get large if the effective bottom mass is larger than
about 3 GeV.

The possibly large size of the corrections from the b/b̃
sector makes it desirable to investigate the corresponding
two-loop corrections and thus to analyse the renormalisa-
tion in this sector. An inconvenient choice could give rise to
artificially large corrections, whereas a convenient scheme
absorbs the dominant contributions into the one-loop result
such that higher-order corrections remain small. The com-
parison of different schemes (where no artificially enhanced
corrections appear) gives an indication of the possible size
of the missing higher-order terms of O(αbα

2
s).

In this paper we derive the result for theO(αbαs) correc-
tions in various renormalisation schemes. The relations be-
tween the different parameters in these schemes are worked
out in detail. The absorption of leading higher-order contri-
butions into an effective bottom-quark mass is discussed.
We perform a numerical analysis of the various schemes
and compare our results with a previous evaluation of the
O(αbαs) corrections carried out in the limit where tanβ
is infinitely large [26]. We discuss the dependence of our
result on the renormalisation scale and provide an estimate
of the remaining theoretical uncertainties in this sector.1

This paper is organised as follows: in Sect. 2 we briefly
review the MSSM Higgs boson sector, outline the corre-
sponding renormalisation at the two-loop level, and de-
scribe the evaluation of the diagrams of O(αbαs). Section 3
contains a detailed description of the renormalisation of the
scalar top and scalar bottom sector, which is explicitly car-
ried out in four different renormalisation schemes for the
latter. The numerical analysis of the O(αbαs) corrections,
the comparison of the different schemes, the investigation
of the renormalisation scale, and the comparison with the

1 This kind of issues have not been addressed in [28,29].

previous result are performed in Sect. 4. The conclusions
can be found in Sect. 5.

2 The Higgs sector at higher orders

We recall that the Higgs sector of the MSSM [35] comprises
two neutral CP -even Higgs bosons, h and H (mh < mH),
the CP -odd A boson,2 and two charged Higgs bosons, H±.
At the tree level, the masses mh,tree and mH,tree can be
calculated in terms of MZ , MA and tanβ from the mass
matrix for the neutral CP -even Higgs components (denoted
by φ):

Mφ = (1)(
M2

A sin2 β + M2
Z cos2 β − (M2

A + M2
Z) sin β cos β

−(M2
A + M2

Z) sin β cos β M2
A cos2 β + M2

Z sin2 β

)
,

and by diagonalization,(
m2

H,tree 0
0 m2

h,tree

)
= Uφ Mφ U†

φ ,

Uφ =
(

cos α sin α

− sin α cos α

)
, (2)

with the angle α determined by

tan 2α = tan 2β
M2

A + M2
Z

M2
A − M2

Z

, − π
2

< α < 0. (3)

In the Feynman diagram (FD) approach, the higher-order
corrected Higgs boson masses, Mh and MH , are derived
as the poles of the h, H-propagator matrix, i.e. by solving
the equation[

p2 − m2
h,tree + Σ̂hh(p2)

] [
p2 − m2

H,tree + Σ̂HH(p2)
]

−
[
Σ̂hH(p2)

]2
= 0 . (4)

The renormalised self-energies

Σ̂(p2) =
(

Σ̂HH(p2) Σ̂hH(p2)
Σ̂hH(p2) Σ̂hh(p2)

)
(5)

can be expanded according to the one-, two-, . . . loop-
order contributions,

Σ̂(p2) = Σ̂(1)(p2) + Σ̂(2)(p2) + . . . . (6)

The dominant one-loop contributions to the Higgs boson
self-energies (and thus to the Higgs boson masses) from the
b/b̃ sector are ofO(αb) and arise from theYukawapart of the
theory (neglecting the gauge couplings) evaluated at p2 =
0. This has been verified by comparison with the full one-
loop result from the b/b̃ sector. Hence, the leading two-loop

2 Throughout this paper we assume that CP is conserved.
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corrections from the b/b̃ sector are the O(αs) corrections to
those dominant one-loop contributions; they are obtained
in the same limit, i.e. for zero external momentum and
neglecting the gauge couplings (the same approximations
have been made in [26]). This approach is analogous to
the way the leading one- and two-loop contributions in the
top/stop sector have been obtained, see e.g. [19].

The renormalisation of the Higgs boson mass matrix
for the O(αbαs) corrections under consideration follows the
description for the O(αtαs) terms given in [19]. Renormal-
isation can be performed by adding the appropriate coun-
terterms,

Mφ → Mφ + δM(1)
φ + δM(2)

φ + . . . , (7)

where δM(i)
φ denotes the ith-loop counterterm matrix con-

sisting of the counterterms to the parameters in the tree-
level mass matrix (1). Field renormalisation is not needed
for the leading O(αbαs) corrections. The renormalised two-
loop Higgs boson self-energies with the leading contribu-
tions of O(αbαs) are thus given by

Σ̂(2)(0) = Σ(2)(0) − UφδM(2)
φ U†

φ . (8)

The counterterm matrix in (8) is composed of the coun-
terterms for the A boson mass and for the tadpoles th,H

(with sW ≡ sin θW, cW = cos θW),

δM(2)
φ =

(
sin2 β − sin β cos β

− sin β cos β cos2 β

)
δM

2 (2)
A

+
e

2MZcWsW

(− cos β(1 + sin2 β) − sin3 β

− sin3 β cos β sin2 β

)
×(cos α δt

(2)
H − sin α δt

(2)
h )

+
e

2MZcWsW

(
cos2 β sin β − cos3 β

− cos3 β −(1 + cos2 β) sin β

)
×(sin α δt

(2)
H + cos α δt

(2)
h ) . (9)

The counterterms are determined by the following condi-
tions.
(i) On-shell renormalisation of the A boson mass, formu-
lated in the approximation of vanishing external momen-
tum, determines the two-loop A-mass counterterm δM

2 (2)
A

according to

δM
2 (2)
A = Σ

(2)
AA(0) . (10)

(ii) Tadpole renormalisation determines the tadpole coun-
terterms by the requirements

δt
(2)
H = −t

(2)
H , δt

(2)
h = −t

(2)
h , (11)

which means that the minimum of the Higgs potential is
not shifted.

The genuine two-loop Feynman diagrams to be evalu-
ated for the Higgs boson self-energies and the tadpoles are
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Fig. 2. Generic two-loop diagrams for the Higgs boson self-
energies (φ = h, H, A; i, j, k, l = 1, 2)
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Fig. 3. Generic two-loop diagrams for the Higgs tadpoles (φ =
h, H; i, j, k = 1, 2)

shown Figs. 2 and 3. The diagrams with sub-loop renor-
malisation are depicted in Figs. 4 and 5. The counterterms
for the insertions, where different renormalisation schemes
will be investigated, are specified in the next section.

The diagrams and the corresponding amplitudes have
been generated with the package FeynArts [36,37]. The fur-
ther evaluation has been done using the program TwoCalc
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Fig. 4. Generic one-loop diagrams with counterterm insertion
for the Higgs boson self-energies (φ = h, H, A, i, j, k = 1, 2)
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Fig. 5. Generic one-loop diagrams with counterterm insertion
for the Higgs tadpoles (φ = h, H, i, j = 1, 2)
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[38]. The resulting expressions are given in terms of the one-
loop functions A0 and B0 [39], and the two-loop vacuum
integrals [40].

3 Renormalisation of the quark/squark sector

Since the two-loop self-energy is considered at O(α{t, b}αs)
it is sufficient to determine the counterterms induced by
the strong interaction only.

The squark-mass terms of the Lagrangian, for a given
species of squarks q̃, can be written as the bilinear expres-
sion

Lq̃−mass = − (q̃†
L, q̃†

R

)Mq̃

(
q̃L

q̃R

)
, (12)

with Mq̃ as the squark-mass matrix squared,

Mq̃ = (13)(
M2

L + m2
q + M2

Zc2β(T 3
q − Qqs

2
W) mq(Aq − µκ)

mq(Aq − µκ) M2
q̃R

+ m2
q + M2

Zc2βQqs
2
W

)
,

where the quantities M2
L, M2

q̃R
, Aq are soft-breaking para-

meters, and µ is the supersymmetric Higgs mass parameter.
Since we are dealing in this paper with a CP -conserving
Higgs sector, these parameters are treated as real. As an
abbreviation, c2β ≡ cos(2β) is introduced; κ is defined as
κ = cot β for up-type squarks and κ = tanβ for down-type
squarks. mq, Qq, and T 3

q are mass, charge, and isospin of
the quark q.

The mass matrix (13) can be diagonalised by a uni-
tary transformation, which in our case of real parameters
involves a mixing angle θq̃,(

q̃1

q̃2

)
= Uq̃

(
q̃L

q̃R

)
,

Uq̃ =
(

Uq̃11 Uq̃12

Uq̃21 Uq̃22

)

=
(

cos θq̃ sin θq̃
− sin θq̃ cos θq̃

)
. (14)

In the (q̃1, q̃2)-basis, the squared-mass matrix is diagonal,

Dq̃ = Uq̃Mq̃U†
q̃ =

(
m2

q̃1
0

0 m2
q̃2

)
, (15)

with the eigenvalues m2
q̃1

and m2
q̃2

given by

m2
q̃1,2

=
1
2

(M2
L + M2

q̃R
) + m2

q +
1
2

T 3
q M2

Zc2β

± 1
2

M2
L − M2

q̃R
+ M2

Zc2β(T 3
q − 2Qqs

2
W)

|M2
L − M2

q̃R
+ M2

Zc2β(T 3
q − 2Qqs2

W)|

×
([

M2
L − M2

q̃R
+ M2

Zc2β(T 3
q − 2Qqs

2
W)
]2

+4m2
q(Aq − µκ)2

)1/2
. (16)

The squark-mass matrix can now be expressed in terms of
the two mass eigenvalues and the mixing angle, yielding

Mq̃ = (17)(
cos2 θq̃ m2

q̃1
+ sin2 θq̃ m2

q̃2
sin θq̃ cos θq̃ (m2

q̃1
− m2

q̃2
)

sin θq̃ cos θq̃ (m2
q̃1

− m2
q̃2

) sin2 θq̃ m2
q̃1

+ cos2 θq̃ m2
q̃2

)
.

3.1 Renormalisation of the top and scalar top sector

The (t, t̃) sector contains four independent parameters: the
top-quark mass mt, the stop masses mt̃1

and mt̃2
, and either

the squark mixing angle θt̃ or, equivalently, the trilinear
coupling At. Accordingly, the renormalisation of this sector
is performed by introducing four counterterms that are de-
termined by four independent renormalisation conditions.

The following renormalisation conditions are imposed
(the procedure is equivalent to that of [41], although there
no reference is made to the mixing angle).
(i) On-shell renormalisation of the top-quark mass yields
the top mass counterterm,

δmt =
1
2

mt

[
Re ΣtL(m2

t ) + Re ΣtR(m2
t ) + 2 Re ΣtS

(m2
t )
]

,

(18)

with the scalar coefficients of the unrenormalised top-quark
self-energy, Σt(p), in the Lorentz decomposition

Σt(p) = p/ω−ΣtL(p2) + p/ω+ΣtR(p2) + mtΣtS
(p2) . (19)

(ii) On-shell renormalisation of the stop masses determines
the mass counterterms

δm2
t̃1

= Re Σt̃11
(m2

t̃1
) , δm2

t̃2
= Re Σt̃22

(m2
t̃2

) , (20)

in terms of the diagonal squark self-energies.
(iii) The counterterm for the mixing angle, θt̃ (entering
(17)), is fixed in the following way:

δθt̃ =
Re Σt̃12

(m2
t̃1

) + Re Σt̃12
(m2

t̃2
)

2(m2
t̃1

− m2
t̃2

)
, (21)

involving the non-diagonal squark self-energy. (This is a
convenient choice for the treatment of O(αs) corrections.
If electroweak contributions were included, a manifestly
gauge-independent definition would be more appropriate.)

In the renormalised vertices with squark and Higgs
fields, the counterterm of the trilinear coupling At appears.
Having already specified δθt̃, the At counterterm cannot
be defined independently but follows from the relation

sin 2θt̃ =
2mt(At − µ cot β)

m2
t̃1

− m2
t̃2

, (22)

yielding

δAt =
1

mt

[
1
2

sin 2θt̃

(
δm2

t̃1
− δm2

t̃2

)
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Table 1. Summary of the four renormalisation schemes for the bottom-quark/squark
sector investigated below. Blank entries indicate dependent quantities

Scheme m2
b̃2

mb Ab θb̃

analogous to t/t̃ sector (“mb OS”) on-shell on-shell on-shell

DR bottom-quark mass (“mb DR”) on-shell DR DR

DR mixing angle and Ab (“Ab, θb̃ DR”) on-shell DR DR

on-shell mixing angle and Ab (“Ab, θb̃ OS”) on-shell on-shell on-shell

+ cos 2θt̃(m
2
t̃1

− m2
t̃2

) δθt̃

− 1
2mt

sin 2θt̃(m
2
t̃1

− m2
t̃2

) δmt

]
. (23)

This relation is valid at O(αs) since both µ and tanβ do not
receive one-loop contributions from the strong interaction.

3.2 Renormalisation of the bottom
and scalar bottom sector

Because of SU(2)-invariance the soft-breaking parameters
for the left-handedup- and down-type squarks are identical,
and thus the squark masses of a given generation are not
independent. The stop and sbottom masses are connected
via the relation

cos2 θb̃m
2
b̃1

+ sin2 θb̃m
2
b̃2

(24)

= cos2 θt̃m
2
t̃1

+ sin2 θt̃m
2
t̃2

+ m2
b − m2

t − M2
W cos(2β) ,

with the entries of the rotation matrix in (14). Since the
stop masses have already been renormalised on-shell, only
one of the sbottom mass counterterms can be determined
independently. In the following, the b̃2 mass is chosen3 as
the pole mass yielding the counterterm from an on-shell
renormalisation condition, i.e.

δm2
b̃2

= Re Σb̃22
(m2

b̃2
) , (25)

whereas the counterterm for mb̃1
is determined as a com-

bination of other counterterms, according to

δm2
b̃1

=
1

cos2 θb̃

(
cos2 θt̃δm2

t̃1
+ sin2 θt̃δm2

t̃2
− sin2 θb̃δm2

b̃2

− sin 2θt̃(m
2
t̃1

− m2
t̃2

)δθt̃ (26)

+ sin 2θb̃(m
2
b̃1

− m2
b̃2

)δθb̃ − 2mt δmt + 2mb δmb

)
.

Accordingly, the numerical value of mb̃1
does not corre-

spond to the pole mass. The pole mass can be obtained
from mb̃1

via a finite shift of O(αs) (see e.g. [42]).
There are three more parameters with counterterms to

be determined: the b-quark mass mb, the mixing angle θb̃,
and the trilinear coupling Ab. They are connected via

sin 2θb̃ =
2mb(Ab − µ tan β)

m2
b̃1

− m2
b̃2

, (27)

3 This choice is possible since (14)–(16) ensure that the b̃2

field and the b̃L field do not coincide.

which reads in terms of counterterms

2 cos 2θb̃ δθb̃ (28)

= sin 2θb̃

δmb

mb
+

2mb δAb

m2
b̃1

− m2
b̃2

− sin 2θb̃

δm2
b̃1

− δm2
b̃2

m2
b̃1

− m2
b̃2

.

Only two of the three counterterms, δmb, δθb̃, δAb can be
treated as independent, which offers a variety of choices.
In the following, four different renormalisation schemes,
see Table 1, will be investigated. Two of them are on-shell
schemes in the sense that the Higgs self-energies do not
depend on the renormalisation scale µDR.

The schemes are described in the following subsections,
prior to the discussion of their quantitative numerical fea-
tures in Sect. 4.

3.2.1 Analogous to the top-quark/squark sector

A straight-forward possibility is to impose renormalisation
conditions in analogy to those of the top-quark/squark
sector in Sect. 3.1.
(i) On-shell renormalisation of the bottom-quark mass mb

determines the corresponding counterterm as follows:

δmb =
1
2

mb

[
Re ΣbL(m2

b) + Re ΣbR(m2
b)

+2 Re ΣbS
(m2

b)
]

. (29)

(ii) The counterterm for the sbottom mixing angle θb̃ is
determined in the following way:

δθb̃ =
Re Σb̃12

(m2
b̃1

) + Re Σb̃12
(m2

b̃2
)

2(m2
b̃1

− m2
b̃2

)
. (30)

The dependent counterterm δm2
b̃1

for the b̃1 mass is
then fully specified by (26). Moreover, Ab is treated here
as a dependent quantity; the corresponding counterterm
δAb follows from the relation (28), yielding in combination
with (26) the expression

δAb =
1

mb

[
− tan θb̃δm2

b̃2
+ (m2

b̃1
− m2

b̃2
)δθb̃

−δmb

(
1

2mb
(m2

b̃1
− m2

b̃2
) sin 2θb̃ − 2 tan θb̃mb

)
+ tan θb̃

(
cos2 θt̃δm2

t̃1
+ sin2 θt̃δm2

t̃2
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− sin 2θt̃(m
2
t̃1

− m2
t̃2

)δθt̃ − 2mtδmt

)]
. (31)

While formally the renormalisation described in this
section is the same as in the top/stop sector, there are nev-
ertheless important differences. The top-quark pole mass
can be directly extracted from experiment and, due to its
large numerical value as compared to other quark masses
and the fact that the present experimental error is much
larger than the QCD scale, it can be used as input for
theory predictions in a well-defined way. For the mass of
the bottom quark, on the other hand, problems related to
non-perturbative effects are much more severe. Therefore
the parameter extracted from the comparison of theory
and experiment [43] is not the bottom pole mass. Usually
the value of the bottom mass is given in the MS renormal-
isation scheme, with the renormalisation scale µMS chosen
as the bottom-quark mass, i.e. mMS

b (mMS
b ) [43].

Another important difference to the top/stop sector is
the replacement of cot β → tan β. As will be discussed
in more detail below, very large effects can occur in this
scheme for large values of µ and tanβ.

3.2.2 DR bottom-quark mass

Potential problems with the bottom pole mass can be
avoided by adopting a renormalisation scheme with a run-
ning bottom-quark mass. In the context of the MSSM it
seems appropriate to use the DR scheme [44] and to in-
clude the SUSY contributions at O(αs) into the running.
We therefore choose a scheme where mb and Ab are both
renormalised in the DR scheme. The following renormalisa-
tion conditions are imposed for the independent quantities.
(i) The b-quark mass is defined in the DR scheme, which
determines the mass counterterm by the expression

δmb =
1
2

mb

[
Re Σdiv

bL (m2
b) + Re Σdiv

bR (m2
b)

+ 2 Re Σdiv
bS

(m2
b)
]

, (32)

where Σdiv means replacing the one- and two-point inte-
grals A and B0 in the quark self-energies by their divergent
parts in the following way:

A(m)|div = m2∆ ,

B0(p2, m1, m2)|div = ∆ , (33)

with ∆ = 2/ε − γ + log 4π, and D = 4 − ε.
(ii) Besides mb, also the trilinear coupling Ab is defined
within the DR scheme. Using (31) and inserting the self-
energies yields the counterterm

δAb =
1

mb

[
− tan θb̃ Re Σdiv

b̃22
(m2

b̃2
)

+
1
2

(
Re Σdiv

b̃12
(m2

b̃1
) + Re Σdiv

b̃12
(m2

b̃2
)
)

+ tan θb̃

(
cos2 θt̃ Re Σdiv

t̃11
(m2

t̃1
) + sin2 θt̃ Re Σdiv

t̃22
(m2

t̃2
)

− 1
2

sin 2θt̃

(
Re Σdiv

t̃12
(m2

t̃1
) + Re Σdiv

t̃12
(m2

t̃2
)
))

−m2
t

(
Re Σdiv

tL (m2
t ) + Re Σdiv

tR (m2
t ) + 2 Re Σdiv

tS
(m2

t )
)]

+
1
2

(
2 tan θb̃mb − 1

2mb
(m2

b̃1
− m2

b̃2
) sin 2θb̃

)
(34)

× (Re Σdiv
bL (m2

b) + Re Σdiv
bR (m2

b) + 2 Re Σdiv
bS

(m2
b)
)

.

The counterterms for the mixing angle, δθb̃, and the
b̃1 mass, δm2

b̃1
, are dependent quantities and can be deter-

mined as combinations of the independent counterterms,
invoking (26) and (28),

δθb̃ =
1

m2
b̃1

− m2
b̃2

[
mbδAb + tan θb̃δm2

b̃2

+δmb

(
1

2mb
(m2

b̃1
− m2

b̃2
) sin 2θb̃ − 2 tan θb̃mb

)
− tan θb̃

(
cos2 θt̃δm2

t̃1
+ sin2 θt̃δm2

t̃2

− sin 2θt̃

(
m2

t̃1
− m2

t̃2

)
δθt̃ − 2mtδmt

)]
, (35)

δm2
b̃1

= tan2 θb̃δm2
b̃2

+ 2 tan θb̃mbδAb

+2
(

1
mb

sin2 θb̃(m
2
b̃1

− m2
b̃2

) + (1 − tan2 θb̃)mb

)
δmb

+(1 − tan2 θb̃)
(
cos2 θt̃δm2

t̃1
+ sin2 θt̃δm2

t̃2

− sin 2θt̃(m
2
t̃1

− m2
t̃2

)δθt̃ − 2mtδmt

)
. (36)

The renormalised quantities in this scheme depend on
the DR renormalisation scale µDR. If not stated otherwise,
in all numerical results given in this paper the DR scale
refers to the top-quark mass, i.e. µDR = mt.

In order to determine the value of mDR,MSSM
b (µDR) from

the value mMS
b (µMS) that is extracted from the experimen-

tal data one has to note that by definition mDR,MSSM
b con-

tains all MSSM contributions at O(αs), while mMS
b contains

only the O(αs) SM correction, i.e. the gluon-exchange con-
tribution. Furthermore, a finite shift arises from the transi-
tion between the MS and the DR scheme. As input value for
mMS

b (MZ) we use in this paper mMS
b (MZ) = 2.94 GeV [45].

The expression for mDR,MSSM
b (µDR) is most easily de-

rived by formally relating mDR,MSSM
b to the bottom pole

mass first and then expressing the bottom pole mass in
terms of the MS mass (the large non-perturbative con-
tributions affecting the bottom pole mass drop out in
the relation of mDR,MSSM

b to mMS
b ). Using the equality

mOS
b + δmOS

b = mDR,MSSM
b + δmDR,MSSM

b and the expres-
sions for the on-shell counterterm and the DR counterterm
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given in (29) and (32), respectively, one finds

mDR,MSSM
b (µDR) (37)

= mOS
b +

1
2

mb

(
Σfin

bL (mb
2) + Σfin

bR (mb
2)
)

+ mb Σfin
bS

(m2
b) .

Here the Σfin are the UV-finite parts of the self-energy
coefficients in (29). They depend on the DR scale µDR and
are evaluated for on-shell momenta, p2 = m2

b . Inserting
mOS

b = mMS
b (MZ)bshift, where

bshift ≡
[
1 +

αs

π

(
4
3

− ln
(mMS

b )2

M2
Z

)]
, (38)

one finds the desired expression for mDR
b ,

mDR,MSSM
b (µDR)

= mMS
b (MZ)bshift +

1
2

mb

(
Σfin

bL (mb
2) + Σfin

bR (mb
2)
)

+mb Σfin
bS

(m2
b) . (39)

3.2.3 DR mixing angle and Ab

A further possibility is to impose renormalisation condi-
tions for the mixing angle θb̃ and for Ab, and to treat the
counterterm of the b-quark mass as a dependent quantity
determined as a combination of the other counterterms
using the relation (28). The renormalisation conditions in
this case read explicitly as follows.
(i) δAb is determined in the DR scheme as in the previous
case by the expression (34).
(ii) The mixing angle θb̃, defined in the DR scheme, is
renormalised by the counterterm

δθb̃ =
Re Σdiv

b̃12
(m2

b̃1
) + Re Σdiv

b̃12
(m2

b̃2
)

2(m2
b̃1

− m2
b̃2

)
. (40)

The counterterm for the b-quark mass, δmb, can be
obtained using (28) and the constraint (26). It is given by
the following quantity (which is well-behaved for θb̃ → 0):

δmb =
[
tan θb̃

(
−δm2

b̃2
+ cos2 θt̃δm2

t̃1
+ sin2 θt̃δm2

t̃2

− sin 2θt̃(m
2
t̃1

− m2
t̃2

)δθt̃ − 2mt δmt

)
− mb δAb + (m2

b̃1
− m2

b̃2
)δθb̃

]
×
[

m2
b̃1

− m2
b̃2

2mb
sin 2θb̃ − 2mb tan θb̃

]−1

. (41)

The numerical value of mb in this scheme is obtained
from (39) and the (finite) difference of the counterterms
given in (41) and (32).

Finally, (26) yields also the counterterm for the depen-
dent squark mass, δm2

b̃1
, with the specification (41) for the

b-mass counterterm.

3.2.4 On-shell mixing angle and Ab

In [26] a renormalisation condition was imposed on the
Ab̃1b̃2 vertex in order to avoid an explicit dependence on
the renormalisation scale µDR. For the purpose of com-
paring our results with those of [26] we include such a
renormalisation scheme in our discussion. While in [26]
the limit tanβ → ∞ has been used to derive all the renor-
malisation conditions and counterterms, we have derived
the relevant quantities for arbitrary values of tanβ. We
call this scheme “on-shell” (as in [26]), although the vertex
is taken at an off-shell value of the A boson momentum.

Similarly to the previous scheme, the counterterm for
the b-quark mass is derived as a linear combination of
other counterterms by means of (28). The independent
renormalisation conditions can be formulated as follows.
(i) The counterterm for the mixing angle θb̃ is defined by

δθb̃ =
Re Σb̃12

(m2
b̃1

) + Re Σb̃12
(m2

b̃2
)

2(m2
b̃1

− m2
b̃2

)
, (42)

as in the scheme “analogous to the top-quark/squark sec-
tor”.
(ii) Ab is determinded by imposing the condition

Λ̂(0, m2
b̃1

, m2
b̃1

) + Λ̂(0, m2
b̃2

, m2
b̃2

) = 0 , (43)

with Λ̂(p2
A, p2

b̃1
, p2

b̃2
) as the renormalised three-point Ab̃1b̃2

vertex function,

�

���

���

�� �����
�
� ��

���
� ��

���
� �

Λ̂(p2
A, p2

b̃1
, p2

b̃2
) = Λ(p2

A, p2
b̃1

, p2
b̃2

)

+
ie

2MW sin θW

[
mb tan β δAb (44)

+(µ + tanβAb)
(

δmb +
1
2

mb(δZb̃1b̃1
+ δZb̃2b̃2

)
)]

.

In the large-tanβ limit, this requirement reproduces the
condition applied in [26].

Condition (ii) can be formulated as an equation deter-
mining the counterterm for Ab in the following way:

δAb

= i
MW sin θW

e mb tan β

(
Λ(0, m2

b̃1
, m2

b̃1
) + Λ(0, m2

b̃2
, m2

b̃2
)
)

− µ + Ab tan β

2 tan β
(δZb̃1b̃1

+ δZb̃2b̃2
)

+
µ + Ab tan β

mb tan β
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×
[
−i

MW sin θW

e tan β

(
Λ(0, m2

b̃1
, m2

b̃1
) + Λ(0, m2

b̃2
, m2

b̃2
)
)

+
mb(µ + Ab tan β)

2 tan β
(δZb̃1b̃1

+ δZb̃2b̃2
)

+(m2
b̃1

− m2
b̃2

)δθb̃

− tan θb̃

(
δm2

b̃2
− cos2 θt̃δm2

t̃1
− sin2 θt̃δm2

t̃2

+ sin 2θt̃(m
2
t̃1

− m2
t̃2

)δθt̃ + 2mtδmt

)]

×
[
µ

(
tan β +

1
tan β

)
+ 2mb tan θb̃

]−1

, (45)

where the Z factors are defined as

δZb̃ib̃i
= −

Σb̃ii
(m2

b̃1
) − Σb̃ii

(m2
b̃2

)

m2
b̃1

− m2
b̃2

. (46)

Again, the dependent counterterm for the b-quark mass
is determined by (28) and the constraint (26), but now
inserting the above specification (45) for δAb, yielding

δmb

= −
[
−i

MW sin θW

e tan β

(
Λ(0, m2

b̃1
, m2

b̃1
) + Λ(0, m2

b̃2
, m2

b̃2
)
)

+
mb(µ + Ab tan β)

2 tan β
(δZb̃1b̃1

+ δZb̃2b̃2
)

+(m2
b̃1

− m2
b̃2

)δθb̃

+ tan θb̃

(
− sin 2θt̃(m

2
t̃1

− m2
t̃2

)δθt̃ − δm2
b̃2

+ cos2 θt̃δm2
t̃1

+ sin2 θt̃δm2
t̃2

− 2mtδmt

)]

×
[
µ

(
tan β +

1
tan β

)
+ 2mb tan θb̃

]−1

. (47)

The numerical value of mb in this scheme is obtained
from (39) and the (finite) difference of the counterterms
given in (47) and (32).

With the specification of δmb in (47), also the b̃1-mass
counterterm δm2

b̃1
in the general relation (26) is fully de-

termined.

3.3 Resummation in the b/b̃ sector

The relation between the bottom-quark mass and the
Yukawa coupling hb, which in lowest order reads mb =
hbv1/

√
2, receives radiative corrections proportional to

hbv2 = hb tan β v1. Thus, large tanβ-enhanced contribu-
tions can occur, which need to be properly taken into ac-
count. As shown in [30, 31] the leading terms of
O(αb(αs tan β)n) can be resummed by using an appro-
priate effective bottom Yukawa coupling.

Accordingly, an effective bottom-quarkmass is obtained
by extracting the UV-finite tanβ-enhanced term ∆mb from
(39) (which enters through ΣbS

) and writing it as 1/(1 +
∆mb) into the denominator. In this way the leading powers
of (αs tan β)n are correctly resummed [30,31]. This yields

mDR,MSSM
b (µDR)

=
(

mMS
b (MZ)bshift +

1
2

mb

(
Σfin

bL (mb
2) + Σfin

bR (mb
2)
)

+ mb Σ̃fin
bS

(m2
b)
)

/(1 + ∆mb) , (48)

where Σ̃bS
≡ ΣbS

+ ∆mb denotes the non-enhanced re-
mainder of the scalar b-quark self-energy at O(αs), and
bshift is given in (38). The tanβ-enhanced scalar part of
the b-quark self-energy, ∆mb, is given at O(αs) by4

∆mb =
2
3π

αs tan β µ mg̃ I(m2
b̃1

, m2
b̃2

, m2
g̃), (49)

with

I(m2
b̃1

, m2
b̃2

, m2
g̃)

= −
(
m2

b̃1
m2

b̃2
log(m2

b̃2
/m2

b̃1
) + m2

b̃1
m2

g̃ log(m2
b̃1

/m2
g̃)

+ m2
g̃m

2
b̃2

log(m2
g̃/m2

b̃2
)
)

/(
(m2

b̃1
− m2

g̃)(m
2
g̃ − m2

b̃2
)(m2

b̃2
− m2

b̃1
)
)

, (50)

and ∆mb > 0 for µ > 0.
In the “mb DR” scheme we use the effective bottom-

quark mass as given in (48) everywhere instead of the DR
bottom quark mass (in particular, we use this bottom mass
in the sbottom-mass matrix squared, (13), from which the
sbottom mass eigenvalues are determined). The numerical
values of the bottom-quark mass in the other renormalisa-
tion schemes can be obtained from (48) as explained above,
and from (51) below.

We incorporate the effective bottom-quark mass of (48)
(or the correspondingly shifted value in the other renor-
malisation schemes) into our one-loop results for the renor-
malised Higgs boson self-energies, which determine the
Higgs boson masses at one-loop order according to (4)–(6).
In this way the leading effects of O(αbαs) are absorbed into
the one-loop result. We refer to the genuine two-loop con-
tributions, which go beyond this improved one-loop result,
as “subleading O(αbαs) corrections” in the following.

4 There are also corrections of O(αt) to ∆mb that can be
resummed [31]. These effects usually amount up to 5–10% of
the O(αs) corrections. Since in this paper we are interested
only in the O(αbαs) contributions to the MSSM Higgs sector,
these corrections have been neglected. Further corrections from
subleading resummation terms can be found in [46].



S. Heinemeyer et al.: High-precision predictions for the MSSM Higgs sector at O(αbαs) 473

Table 2. Set of default input parameters

SM parameters:

mt = 174.3 GeV, mMS
b (MZ) = 2.94 GeV,

MZ = 91.1875 GeV, MW = 80.426 GeV, GF = 1.16639 10−5

parameters of the Higgs sector:

MA = 120 GeV tan β = 50 µ = −1000 GeV

soft-breaking parameters:

for the gauginos: for the sfermions:

M1 =
5
3

sin2 θW

cos2 θW
M2

ML = ML{q̃i, l̃i} = 1000 GeV
with i = 1, 2, 3

M2 = 100 GeV Mf̃R
= 1000 GeV

with f = u, c, t, d, s, b, e, µ, τ

M3 = 1000 GeV A{u, c, t} = A{d, s, b} = A{e, µ, τ}
= 2000 GeV

4 Numerical results

4.1 Evaluation

If not mentioned explicitly in the text the default set of
parameters shown in Table 2 is used. Large values of tanβ
and |µ| are chosen in order to illustrate possibly large effects
in the b/b̃ sector.

We will mostly discuss the case of negative µ, since ac-
cording to (48)–(50) this sign of µ leads to a negative ∆mb

and therefore to an increase of the effective bottom-quark
mass. This gives rise to an enhancement of the corrections
from the b/b̃ sector; see Fig. 1. While the negative sign of
µ is disfavoured from the comparison of the MSSM predic-
tion [47,48] with the experimental data on the anomalous
magnetic moment of the muon [49], it would seem prema-
ture at this stage to completely disregard this possibility.
For µ > 0, on the other hand, the corrections to the Higgs-
boson masses from the b/b̃ sector will normally not exceed
the GeV level if the result is expressed in terms of an ap-
propriately chosen running bottom-quark mass (see Fig. 1).
It should be noted, however, that the prospective experi-
mental accuracy on Mh at the LHC and the ILC will be
significantly below the GeV level, so that the inclusion of
non-enhanced two-loop corrections will be necessary in or-
der to achieve the same level of precision for the theoretical
prediction (see the discussion below).

For the calculation of the Higgs boson masses presented
below the complete one-loop self-energies have been used,
with tanβ renormalised in the DR scheme [50–52] and with
the Z boson mass on-shell. At the two-loop level, besides
the O(αbαs) corrections also the contributions O(αtαs)
using the one-loop sub-renormalisation of Sect. 3.1 have
been included. For simplicity we have neglected the O(α2

t )
terms [25]. For the O(αtαs) corrections the top pole mass,
mt = 174.3 GeV, has been used. The inclusion of all known
corrections and the new experimental top-quark mass value
of mt = 178.0 GeV [53] in our analysis would yield an
increase in Mh of O(8 GeV) [32]. Therefore the mass values
given in our numerical analysis should not be viewed as

predictions of Mh; they are rather illustrations of the αs

corrections to the bottom Yukawa contributions at the two-
loop level. (It should be noted that the chosen parameters
are such that they are not in conflict with the experimental
lower bounds on Mh [2, 3].)

4.2 Comparison of the different
renormalisation schemes

In order to compare the different renormalisation schemes,
the parameters entering the one-loop result have to be
transformed according to the different renormalisation pre-
scriptions. As our default for which the input parameters
are fixed we have chosen the “mb DR” scheme, where mb

and Ab are defined as DR parameters. As explained in
Sect. 3, the parameters are converted to a different renor-
malisation scheme RS (with counterterms δxRS) with the
help of the following transformations:

mRS
b = mDR

b − δmRS
b |finite , (51)

ARS
b = ADR

b − δARS
b |finite , (52)

and analogously for the other parameters. If not stated
otherwise, the DR scale has always been chosen as µDR =
mt. As an example, in Tables 3 and 4 numerical values for
the bottom-quark mass, Ab and the sbottom masses in the
different schemes (see Table 1), are shown for tan β = 30
and tanβ = 50 and using the default values given in Table 2
otherwise.

The values given in Tables 3 and 4 indicate that the “mb

OS” scheme leads to huge corrections in Ab that invalidate
the applicability of this scheme. The other schemes give
rise to only moderate shifts in the parameters.

The reason for the problematic behaviour of the “mb

OS” scheme is easy to understand. The renormalisation

Table 3. Values of the bottom-quark mass, Ab and mb̃1
in

the different schemes for tan β = 30 and µ = −1000 GeV. The
value of mb̃2

, which is renormalised on-shell (see (25)), is the
same in all four schemes, mb̃2

= 938.44 GeV

Scheme mb [GeV] Ab [GeV] mb̃1
[GeV]

mb DR 3.79 2000.00 1059.95
Ab, θb̃ DR 3.04 2000.00 1039.50
Ab, θb̃ OS 2.99 2332.81 1039.04
mb OS 3.77 −4284.56 1039.25

Table 4. Values of the bottom-quark mass, Ab and mb̃1
in

the different schemes for tan β = 50 and µ = −1000 GeV. The
value of mb̃2

is the same in all four schemes, mb̃2
= 836.48 GeV

Scheme mb [GeV] Ab [GeV] mb̃1
[GeV]

mb DR 5.82 2000.00 1142.16
Ab, θb̃ DR 5.26 2000.00 1117.93
Ab, θb̃ OS 5.24 2219.40 1118.02
mb OS 4.93 6508.12 1122.04



474 S. Heinemeyer et al.: High-precision predictions for the MSSM Higgs sector at O(αbαs)

condition in the “mb OS” scheme is a condition on the
sbottom mixing angle θb̃ and thus on the combination
(Ab−µ tan β) (see (28)). In parameter regions where µ tan β
is much larger than Ab, the counterterm δAb receives a very
large finite shift when calculated from the counterterm δθb̃.
More specifically, δAb as given in (31) contains the contri-
bution

δAb =
1

mb

[
− δmb

2 mb
(m2

b̃1
− m2

b̃2
) sin 2θb̃ + . . .

]
=

1
mb

[−δmb(Ab − µ tan β) + . . .] , (53)

that can give rise to very large corrections to Ab. This
problem is avoided in the other renormalisation schemes
introduced in Table 1, where the renormalisation condition
is applied directly to Ab, rather than deriving δAb from
the renormalisation of the mixing angle.

We now turn to the numerical comparison of the dif-
ferent renormalisation schemes. As discussed above, the
tan β-enhanced terms of O(αbαs) entering via ∆mb have
been absorbed into the one-loop result. The meaning of
the various curves in the following figures is specified as
(see also Table 1)
(1) dashes with dots (black): O(αtαs) with mDR,MSSM

b , re-
sults without subleading two-loop O(αbαs) terms;
(2) dot-dash (light blue): “mb OS” scheme for subleading
two-loop O(αbαs) terms;
(3) solid (red): “mb DR” scheme for subleading two-loop
O(αbαs) terms;
(4) dotted (dark blue): “Ab, θb̃ DR” scheme for subleading
two-loop O(αbαs) terms;
(5) dashes with stars (green): “Ab, θb̃ OS” scheme for sub-
leading two-loop O(αbαs) terms.

We start our analysis of the different renormalisation
schemes by comparing the results for Mh and MH as a func-
tion of tanβ in Fig. 6. The other parameters are as given
in Table 2. As expected from the discussion of Tables 3
and 4, the “mb OS” scheme gives rise to artificially large
corrections and shows very large deviations from the other
schemes for intermediate and large values of tan β. This
behaviour is even more pronounced for MH than for Mh, as
can be seen in the lower plot of Fig. 6. These extremely large
corrections are a consequence of the large contributions to
the counterterm of the parameter Ab (see (53)). The Higgs
self-energy contribution from virtual sbottoms contains a
term proportional to A2

b . Using as input a value for Ab

according to (52), very large contributions proportional
to (δAb)2 are introduced. These corrections are more pro-
nounced in ΣHH , where they enter like (cos α Ab)2, than
in Σhh, where they enter like (sin α Ab)2 (|α| � 1 in our
analysis). The unacceptably large contributions to δAb in
the “mb OS” scheme invalidate a perturbative treatment
in this scheme. We therefore discard this scheme in the fol-
lowing and focus our discussion on the other three schemes
defined in Table 1.

The other schemes all give similar and numerically well-
behaved results, where Mh starts to decrease rapidly with
tan β for tanβ � 40. Negative mass squares are reached at

Fig. 6. tan β dependence of Mh and MH for MA = 120 GeV
and µ negative

tan β � 53. The main effect comes from the leading contri-
butions of O(αbαs) that enter via the resummation of ∆mb;
see (48). The decrease with increasing tan β is mainly due to
the dependence of ∆mb ∼ µ tan β in (49). The subleading
O(αbαs) corrections, which arise from the genuine two-
loop diagrams, are of O(1 GeV). The differences between
the three renormalisation schemes are of similar size. For
this particular parameter choice the “Ab, θb̃ DR” scheme
enhances Mh, whereas the other two schemes decrease Mh

compared to the case where the genuine two-loop correc-
tions are omitted.

In Fig. 7 we show Mh as a function of tanβ for the
same parameters as in Fig. 6, but with MA = 700 GeV.
This results in general in larger Mh values, but the general
behaviour as a function of tanβ is the same as for MA =
120 GeV; Mh drops steeply for large tanβ values. In all
three schemes the subleading terms increase Mh by a few
GeV, depending on tanβ.

As discussed above, large corrections from the b/b̃ sec-
tor are only expected for negative values of µ. In Fig. 8
we show the results for Mh as a function of tanβ with
positive µ and MA = 120 and 700 GeV, respectively. The
other parameters are given in Table 2. The positive sign of
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Fig. 7. tan β dependence of Mh for MA = 700 GeV and µ neg-
ative

Fig. 8. tan β dependence of Mh for MA = 120 GeV (upper
plot) and MA = 700 GeV (lower plot) for positive µ

µ results in a positive ∆mb and thus a smaller numerical
value of mDR,MSSM

b . As expected5, the variation of Mh with
tan β is much smaller than for negative µ. Both, the lead-

5 See also the discussion in [26], where the opposite sign
convention for µ is used.

Fig. 9. µ dependence of Mh for MA = 120 GeV (upper plot)
and MA = 700 GeV (lower plot) for tan β = 50

ing corrections, i.e. the tanβ-enhanced terms of O(αbαs),
as well as the subleading corrections are at the level of
O(100 MeV). The “mb DR” scheme does not show any vis-
ible corrections beyond the resummed contributions. This
leads to the conclusion that for positive µ the corrections
beyond the one-loop level coming from the b/b̃ sector are
sufficiently well under control. However, in view of the fact
that the anticipated ILC accuracy on Mh [7–9] and the
parametric uncertainty of the theory prediction from the
ILC measurement of the top-quark mass [54,55] will both
be about 100 MeV, ultimately the aim will be to reduce the
theoretical uncertainties from unknown higher-order cor-
rections to at least this level. This will require the inclusion
of all two-loop corrections (and a significant part of cor-
rections beyond two-loop order). For the further analysis
in this paper we focus on negative values of µ.

The variation of Mh with µ (for µ < 0) for tanβ = 50
is shown in Fig. 9. As can be expected from (49) the cor-
rections at O(αbαs) increase with increasing |µ|. Typically
the genuine two-loop contributions are of O(1 GeV). For
large MA all the schemes lead to an increase of Mh, whereas
for small MA both negative and positive shifts can occur.
Differences in the Mh predictions induced by the differ-
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Fig. 10. MA dependence of Mh for tan β = 50 and µ negative

Fig. 11. mg̃ dependence of Mh for MA = 700 GeV, tan β = 50
and µ negative

ent renormalisation schemes are below the GeV level for
large MA.

In Fig. 10 the dependence of Mh on MA is shown for the
different renormalisation schemes, with the other default
parameters from Table 2. For MA � 200 GeV the sublead-
ing terms of all three schemes enhance Mh by O(1 GeV). A
decrease only occurs for small values of MA, depending on
the scheme. The differences in the Mh prediction resulting
from the use of different renormalisation schemes decrease
for MA � 200 GeV to O(0.1 GeV).

In Fig. 11 it can be seen that the behaviour of the
corrections strongly depends on the choice of mg̃. The figure
shows Mh as a function of mg̃ for µ = −1000 GeV, tan β =
50 and MA = 700 GeV. For mg̃ � 1000 GeV all schemes
lead to an increase of Mh from the subleading O(αbαs)
corrections. For mg̃ � 1500 GeV, on the other hand, all
schemes lead to a decrease, where the size of the individual
corrections also strongly varies with mg̃. Accordingly, the
relative size of the corrections in the different schemes also
varies with mg̃. Corrections up to about 3 GeV are possible.
The differences between the three schemes are of O(2 GeV)
for large mg̃. It should be noted that the effects of the
higher-order corrections to Mh do not decouple with large
mg̃. The corrections at O(αtαs) [19] as well as O(αbαs)

grow logarithmically in the renormalisation schemes that
we have adopted.

The above analysis of the three schemes “mb DR”, “Ab,
θb̃ DR”, and “Ab, θb̃ OS” in various parameter regions
yields numerically well-behaved and physically meaning-
ful results. As there is no clear preference for one of the
schemes on physical grounds, the difference between the
results obtained in the three schemes can be interpreted as
an indication of the possible size of missing higher-order
corrections. The size of the individual corrections and also
the differences between the renormalisation schemes sensi-
tively depend on the input parameters. Typically we find
that the genuine two-loop corrections in the b/b̃ sector
yield a shift in Mh of O(1 GeV). The differences between
the three schemes are usually somewhat smaller.

4.3 Numerical analysis
of the renormalisation scale dependence

While in the previous section we compared the results
of different renormalisation scheme, we now focus on the
“mb DR” scheme and investigate the effect of varying the
renormalisation scale of the O(αbαs) result obtained in
this scheme. We vary the scale within the interval mt/2 ≤
µDR ≤ 2 mt, resulting in a shift which is formally of
O(αbα

2
s). The results are shown as a function of mg̃ for

tan β = 50 in Fig. 12 for MA = 120 GeV and MA =
700 GeV.

The µDR variation of the leading contribution (the
O(αtαs) result including resummation) is shown as the
dark shaded (black) band. The results including the sub-
leading corrections in the “mb DR” scheme are shown as a
light shaded (red) band. It can be seen that the variation
with µDR is strongly reduced by the inclusion of the sub-
leading contributions. The variation with µDR within the
“mb DR” scheme is tiny for mg̃ � 500 GeV, and reaches
±2 GeV for large mg̃ values. Thus, the µDR variation causes
a similar shift in Mh as the comparison between the three
renormalisation schemes discussed above.

We have also analysed the variation with µDR in the
case µ > 0, which is not shown here. As for negative µ,
the variation with µDR is of the same order as the dif-
ferences between the three renormalisation schemes; see
Fig. 8. Therefore, for µ > 0 the unknown higher-order cor-
rections to Mh from the b/b̃ sector can be estimated to be
of O(100 MeV).

4.4 Comparison with existing calculations

Finally we compare our result with the existing calculation
of the O(αbαs) corrections presented in [26]. The renor-
malisation employed there consists of an on-shell renor-
malisation of the two scalar bottom masses and the on-
shell condition for Ab shown in Sect. 3.2.4. We denote it
as “mb̃, Ab OS” renormalisation. Thus, the differences
between our “Ab, θb̃ OS” and the “mb̃, Ab OS” renormal-
isation are the different treatment of the mb̃1

renormali-
sation, as well as the treatment of tan β. We kept tanβ
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Fig. 12. µDR dependence of Mh as a function of mg̃ for MA =
120 GeV (upper plot) and MA = 700 GeV (lower plot) for
µ = −1000 GeV, tan β = 50. The black area corresponds to the
O(αtαs) result including resummation, i.e. the result without
the subleading two-loop O(αbαs) terms

as a free parameter, whereas in [26] it was set to infinity
in the subleading O(αbαs) corrections. In [26] the shift of
the sbottom masses due to the SU(2)-invariance was taken
into account in the numerical evaluation of the sbottom
masses following the prescription in [56] (see also [42]).

Our result for Mh in the “Ab, θb̃ OS” scheme is com-
pared with the result of [26] in Fig. 13. For the implementa-
tion of the latter (“mb̃, Ab OS” scheme) the Fortran code
of [26] for the numerical evaluation of the O(αsαb) correc-
tions to the Higgs-boson self-energies has been used [57].
Thereby the input values were determined according to (51)
and (52). Using these input values for Ab and mb the
sbottom masses were calculated taking the sbottom mass
shift into account [56]. Mh is shown as function of mg̃ for
µ < 0, tanβ = 50, and MA = 700 GeV. Our result in
the “Ab, θb̃ OS” scheme is shown as the dash-star (green)
curve, while the result of [26] (“mb̃, Ab OS” scheme) is
given by the fine-dotted (pink) curve. The leading contri-
bution in the two schemes, i.e. the O(αtαs) result including

Fig. 13. Comparison of our O(αbαs) result for Mh in the
“Ab, θb̃ OS” scheme and the result of [26] (“mb̃, Ab OS”
scheme) as a function of mg̃. The O(αtαs) results in the two
schemes, where the subleading O(αbαs) corrections are omitted
(using the appropriate renormalised parameters), are also shown

Fig. 14. Comparison of our O(αbαs) result in three different
renormalisation schemes and the result of [26]. The three curves
for ∆Mh show the difference between our result in each of the
three schemes and the result of [26] as a function of tan β

resummation, is also shown: the light-dot-dashed (orange)
curve shows the O(αtαs) result using the “Ab, θb̃ OS”
renormalised parameters; the corresponding result for the
“mb̃, Ab OS” renormalised parameters is shown as the
light-dotted (gray) curve.

Figure 13 shows that the O(αtαs) results in the two
schemes differ from each other by up to 2 GeV for large
mg̃. The inclusion of the subleading two-loop corrections re-
duces this difference significantly. Our result in the
“Ab, θb̃ OS” scheme agrees with the result of [26] to better
than 0.5 GeV.

In Fig. 14 we compare our result in each of the three
schemes discussed above, i.e. the “Ab, θb̃ OS”, the “mb DR”
and the “Ab, θb̃ DR” schemes, with the result of [26]. The
difference ∆Mh between our result and the result of [26]
is shown for each of the three schemes as a function of
tan β for mg̃ = 1500 GeV, µ = −1000 GeV, and MA =
700 GeV. The differences stay below 1 GeV for tan β � 50,
where our result in the “Ab, θb̃ DR” scheme shows the
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biggest deviation from the result of [26], while as expected,
the difference is smallest for the “Ab, θb̃ OS” scheme. For
tan β > 50 large deviations occur because of the sharp
decrease of Mh in this region (see e.g. Fig. 7).

5 Conclusions

We have obtained results for the two-loop O(αbαs) cor-
rections to the neutral CP -even Higgs-boson masses in the
MSSM within different renormalisation schemes. The lead-
ing tanβ-enhanced contributions of the b/b̃ sector can be
incorporated into an appropriately chosen bottom Yukawa
coupling, forwhichweuse the bottom-quarkmass in theDR
scheme with a resummation of the leading contributions.
We have analysed in detail the impact of the genuine (sub-
leading) O(αbαs) two-loop corrections in different parts
of the MSSM parameter space and we have compared the
results obtained in the different schemes.

We have shown that an on-shell scheme that is fre-
quently used in the t/t̃ sector leads to numerically unsta-
ble results if it is applied in the b/b̃ sector. The origin of
the huge corrections in this scheme was traced to the fact
that it involves a renormalisation condition for the sbottom
mixing angle, θb̃, rather than for the trilinear coupling, Ab.

The other three schemes that we have analysed yield
numerically well-behaved and physically meaningful re-
sults. For µ > 0 the effect of the genuine O(αbαs) two-loop
corrections is rather small, typically of O(100 MeV). Cor-
rections at this level will nevertheless be relevant in view
of the prospective accuracy of measurements in the Higgs
sector and of the top-quark mass at the ILC. For µ < 0 the
effective bottom Yukawa coupling increases, leading to an
enhancement of the effects from the b/b̃ sector. While the
constraints arising from the measurement of the anomalous
magnetic moment of the muon favour the positive sign of
µ, it seems premature at the present stage to discard the
parameter region with µ < 0. For large values of tanβ and
mg̃ and large negative values of µ we find that the genuine
O(αbαs) corrections can amount up to 3 GeV. We have
compared our result for the O(αbαs) corrections with the
existing result in the literature, which was obtained in the
limit of tanβ → ∞, and found good agreement.

The comparison of the results in the different schemes
thatwehave analysed and the investigation of the renormal-
isation scale dependence give an indication of the possible
size of missing higher-order corrections in the b/b̃ sector.
For µ > 0 the higher-order corrections from the b/b̃ sec-
tor (beyond O(αbαs)) appear to be sufficiently well under
control even in view of the prospective ILC accuracy. This
applies especially to the “mb DR” scheme, where the cor-
rections beyond the improved one-loop result have been
found to be particularly small. For µ < 0, on the other
hand, sizable higher-order corrections from the b/b̃ sector
are possible. The size of the individual corrections and also
the difference between the analysed schemes varies signifi-
cantly with the relevant parameters, µ, tanβ, mg̃ and MA.
We estimate the uncertainty from missing higher-order cor-

rections in the b/b̃ sector to be about 2 GeV in this region
of parameter space.

The results obtained will be implemented into the For-
tran code FeynHiggs [58,59]. The evaluation of the results
within the three schemes will allow one to obtain an esti-
mate of the size of the missing higher-order corrections as
a function of the chosen input parameters.
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Appendix:
Counterterms of the quark/squark sector

In Sect. 3 the counterterms have been given using the def-
initions (14) and (16) for the sfermion masses and mixing
angles. In this appendix the counterterms are given in a
more general way allowing one to use also other definitions
for the sfermion masses and mixing angles. Introducing a
counterterm for the mixing angle needs a certain choice
of definitions of the sfermion masses and mixing angles.
Instead of using an explicit mixing angle counterterm the
counterterm δYq̃ is introduced as

δYq̃ = (Uq̃δMq̃U†
q̃ )12 = (Uq̃δMq̃U†

q̃ )21 , (54)

where the countertermmassmatrix δMq̃ contains the coun-
terterms of the parameters appearing in (13). With the
definitions (14) and (16) δYq̃ is related to the mixing angle
counterterm as follows:

δYq̃ = (m2
q̃1

− m2
q̃2

) δθq̃ . (55)

Top quark/squark sector

The counterterms for the top-quark mass (18) and the stop
masses (20) are already in a general form. The counterterm
for the mixing angle (21) is replaced by

δYt̃ =
1
2

(
Re Σt̃12

(m2
t̃1

) + Re Σt̃12
(m2

t̃2
)
)

, (56)

and the counterterm of the A parameter (23) is rewritten as

δAt =
1

mt

[
Ut̃11

Ut̃12

(
δm2

t̃1
− δm2

t̃2

)
(57)

+(Ut̃11
Ut̃22

+ Ut̃12
Ut̃21

) δYt̃ − δmt (At − µ cot β)
]
.
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Analogous to the top-quark/squark sector

As in the top-quark/squark sector the counterterm for the
mixing angle (30) is replaced by

δYb̃ =
1
2

(
Re Σb̃12

(m2
b̃1

) + Re Σb̃12
(m2

b̃2
)
)

. (58)

The dependent counterterms of the b̃1-mass (26) and of
the A parameter (31) are rewritten as follows:

δm2
b̃1

=
1

U2
b̃11

[
−U2

b̃12
δm2

b̃2
+ 2Ub̃12

Ub̃22
δYb̃ + U2

t̃11
δm2

t̃1
(59)

+ U2
t̃12

δm2
t̃2

− 2Ut̃12
Ut̃22

δYt̃ + (2mbδmb − 2mtδmt)
]

,

δAb =
1

mb

[
− Ub̃12

Ub̃11

δm2
b̃2

+
Ub̃22

Ub̃11

δYb̃

−δmb

(
Ab − µ tan β − 2

Ub̃12

Ub̃11

mb

)
(60)

+
Ub̃12

Ub̃11

(
U2

t̃11
δm2

t̃1
+ U2

t̃12
δm2

t̃2
− 2Ut̃12

Ut̃22
δYt̃

−2mtδmt

)]
.

DR bottom-quark mass

The A parameter counterterm (34) is written in the fol-
lowing way:

δAb =
1

mb

[
− Ub̃12

Ub̃11

Re Σdiv
b̃22

(m2
b̃2

)

+
Ub̃22

2Ub̃11

(
Re Σdiv

b̃12
(m2

b̃1
) + Re Σdiv

b̃12
(m2

b̃2
)
)

+
Ub̃12

Ub̃11

(
U2

t̃11
Re Σdiv

t̃11
(m2

t̃1
) + U2

t̃12
Re Σdiv

t̃22
(m2

t̃2
)

−Ut̃12
Ut̃22

(
Re Σdiv

t̃12
(m2

t̃1
) + Re Σdiv

t̃12
(m2

t̃2
)
)

− m2
t

(
Re Σdiv

tL (m2
t ) + Re Σdiv

tR (m2
t ) + 2 Re Σdiv

tS
(m2

t )
))]

+
1
2

(
2

Ub̃12

Ub̃11

mb − Ab + µ tan β

)
(61)

× (Re Σdiv
bL (m2

b) + Re Σdiv
bR (m2

b) + 2 Re Σdiv
bS

(m2
b)
)

,

avoiding an explicit definition of the mixing angles. The
dependent counterterm for the mixing angle (35) is re-
placed by

δYb̃

=
Ub̃11

Ub̃22

mbδAb +
Ub̃11

Ub̃22

δmb

(
Ab − µ tan β − 2

Ub̃12

Ub̃11

mb

)

+
Ub̃12

Ub̃22

[
δm2

b̃2
− U2

t̃11
δm2

t̃1
− U2

t̃12
δm2

t̃2
+ 2Ut̃12

Ut̃22
δYt̃

+2mtδmt

]
, (62)

and the counterterm for the b̃1-mass (36) by

δm2
b̃1

=
1

U2
b̃11

[
(1 − 2U2

b̃12
)

×
(
U2

t̃11
δm2

t̃1
+ U2

t̃12
δm2

t̃2
− 2Ut̃12

Ut̃22
δYt̃ − 2mtδmt

)
+U2

b̃12
δm2

b̃2
+ 2Ub̃11

Ub̃12
mbδAb

+
(
2Ub̃12

Ub̃11
(Ab − µ tan β)

+ 2(1 − 2U2
b̃12

)mb

)
δmb

]
. (63)

DR mixing angle and Ab

The counterterm for the mixing angle (40) is replaced by

δYb̃ =
1
2

(
Re Σdiv

b̃12
(m2

b̃1
) + Re Σdiv

b̃12
(m2

b̃2
)
)

. (64)

Thedependent counterterm for thebottom-quarkmass (41)
is rewritten as the following combination of counterterms:

δmb = −
[
mb δAb − Ub̃22

Ub̃11

δYb̃ +
Ub̃12

Ub̃11

δm2
b̃2

− Ub̃12

Ub̃11

(
U2

t̃11
δm2

t̃1
+ U2

t̃12
δm2

t̃2
− 2Ut̃12

Ut̃22
δYt̃

−2mt δmt

)]

×
[
Ab − µ tan β − 2mb

Ub̃12

Ub̃11

]−1

. (65)

The counterterm for the b̃1-mass is obtained by inserting
the expression (65) for the bottom-quark mass into the ex-
pression (59).

On-shell mixing angle and Ab

The renormalisedvertex (44) has the following general form:

Λ̂(p2
A, p2

b̃1
, p2

b̃2
) = Λ(p2

A, p2
b̃1

, p2
b̃2

)

+
ie

2MW sin θW
(Ub̃11

Ub̃22
− Ub̃12

Ub̃21
)

×
[
mb tan βδAb + (µ + tanβAb)

×
(

δmb +
1
2

mb(δZb̃1b̃1
+ δZb̃2b̃2

)
)]

. (66)
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Using the renormalisation condition (43) the counterterms
of the A parameter and the bottom-quark mass can be
derived as

δAb = i
MW sin θW

e mb tan β(Ub̃11
Ub̃22

− Ub̃12
Ub̃21

)

×
(
Λ(0, m2

b̃1
, m2

b̃1
) + Λ(0, m2

b̃2
, m2

b̃2
)
)

− µ + Ab tan β

2 tan β
(δZb̃1b̃1

+ δZb̃2b̃2
)

− µ + Ab tan β

mb tan β

[
i

MW sin θW

e tan β(Ub̃11
Ub̃22

− Ub̃12
Ub̃21

)

×
(
Λ(0, m2

b̃1
, m2

b̃1
) + Λ(0, m2

b̃2
, m2

b̃2
)
)

− mb(µ + Ab tan β)
2 tan β

(δZb̃1b̃1
+ δZb̃2b̃2

)

+
Ub̃12

Ub̃11

δm2
b̃2

− Ub̃22

Ub̃11

δYb̃

− Ub̃12

Ub̃11

(
U2

t̃11
δm2

t̃1
+ U2

t̃12
δm2

t̃2
− 2Ut̃12

Ut̃22
δYt̃

−2mtδmt

)]

×
[
µ

(
tan β +

1
tan β

)
+ 2mb

Ub̃12

Ub̃11

]−1

, (67)

and

δmb =

[
i

MW sin θW

e tan β(Ub̃11
Ub̃22

− Ub̃12
Ub̃21

)

×
(
Λ(0, m2

b̃1
, m2

b̃1
) + Λ(0, m2

b̃2
, m2

b̃2
)
)

− mb(µ + Ab tan β)
2 tan β

(δZb̃1b̃1
+ δZb̃2b̃2

)

− Ub̃22

Ub̃11

δYb̃ +
Ub̃12

Ub̃11

δm2
b̃2

− Ub̃12

Ub̃11

(
U2

t̃11
δm2

t̃1
+ U2

t̃12
δm2

t̃2
− 2Ut̃12

Ut̃22
δYt̃

−2mtδmt

)]

×
[
µ

(
tan β +

1
tan β

)
+ 2mb

Ub̃12

Ub̃11

]−1

, (68)

replacing (45) and (47). The counterterm of the mixing
angle (42) is replaced by (58).
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